'★ 과학 이야기'에 해당되는 글 13건

  1. 2012.06.28 Rabi equation derivation
  2. 2012.06.07 물리 위키피디아 참고
  3. 2012.04.22 양자 관련 자료 2개
  4. 2012.03.30 [Wikipedia] Huygens–Fresnel principle
  5. 2012.03.16 Probability flux
  6. 2012.02.16 Angular momentum operators (l=1)
  7. 2011.03.18 Blackbody Radiation 수식정리
  8. 2011.03.18 Blackbody radiation 총정리
  9. 2011.03.04 Schottky diode
  10. 2011.02.11 QFT, RQM.
★ 과학 이야기2012. 6. 28. 23:07

 

ejtpv6i20p235 Derivation of the Rabi Equation by Means of the Pauli Matrices.pdf

깔끔하게 라비방정식을 유도함.

'★ 과학 이야기' 카테고리의 다른 글

물리 위키피디아 참고  (0) 2012.06.07
양자 관련 자료 2개  (0) 2012.04.22
[Wikipedia] Huygens–Fresnel principle  (0) 2012.03.30
Probability flux  (0) 2012.03.16
Angular momentum operators (l=1)  (0) 2012.02.16
Posted by White Joker
★ 과학 이야기2012. 6. 7. 17:21

http://en.wikipedia.org/wiki/Feynman_slash_notation

http://en.wikipedia.org/wiki/Gamma_matrices

'★ 과학 이야기' 카테고리의 다른 글

Rabi equation derivation  (0) 2012.06.28
양자 관련 자료 2개  (0) 2012.04.22
[Wikipedia] Huygens–Fresnel principle  (0) 2012.03.30
Probability flux  (0) 2012.03.16
Angular momentum operators (l=1)  (0) 2012.02.16
Posted by White Joker
★ 과학 이야기2012. 4. 22. 23:33

 

sphericalbessel.pdf

 

Pfadintegrale.pdf

둘다 구글에서 검색해서 찾은 거.

 

이름에서도 알 수 있겠지만, 첫번째 거는 수소원자 free potential에서 슈뢰딩거 방정식 풀 때 나오는 미분방정식의 해. 베셀이랑 뉴만에 대해서 다룬다.

 

두번째 거는 패스 인티그럴. J. J. Sakurai라는 사람이 쓴 modern quantum mechanics 책 2단원 뒷부분에서도 볼 수 있다.

'★ 과학 이야기' 카테고리의 다른 글

Rabi equation derivation  (0) 2012.06.28
물리 위키피디아 참고  (0) 2012.06.07
[Wikipedia] Huygens–Fresnel principle  (0) 2012.03.30
Probability flux  (0) 2012.03.16
Angular momentum operators (l=1)  (0) 2012.02.16
Posted by White Joker
★ 과학 이야기2012. 3. 30. 17:07

From Wikipedia, the free encyclopedia

 

The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) is a method of analysis applied to problems of wave propagation both in the far-field limit and in near-field diffraction.

[edit] History

Huygens[1] proposed that every point to which a luminous disturbance reaches becomes a source of a spherical wave, and the sum of these secondary waves determines the form of the wave at any subsequent time. He assumed that the secondary waves travelled only in the "forward" direction and it is not explained in the theory why this is the case. He was able to provide a qualitative explanation of linear and spherical wave propagation, and to derive the laws of reflection and refraction using this principle, but could not explain the deviations from rectilinear propagation which occur when light encounters edges, apertures and screens, commonly known as diffraction effects.[2]

Fresnel[3] showed that Huygens' principle, together with his own principle of interference could explain both the rectilinear propagation of light and also diffraction effects. To obtain agreement with experimental results, he had to include additional arbitrary assumptions about the phase and amplitude of the secondary waves, and also an obliquity factor. These assumptions have no obvious physical foundation but led to predictions which agreed with many experimental observations, including the Arago spot.

Poisson was a member of the French Academy which reviewed Fresnel's work.[4] He used Fresnel's theory to predict that a bright spot will appear in the center of the shadow of a small disc and deduced from this that the theory was incorrect. However, Arago, another member of the committee, performed the experiment and showed that the prediction was correct. (Lisle had actually observed this fifty years earlier.[2]) This was one of the investigations which led to the victory of the wave theory of light over the then predominant corpuscular theory.

The Huygens–Fresnel principle provides a good basis for understanding and predicting the wave propagation of light. However, this article[5] provides an interesting discussion of the limitations of the principle and also of different scientists' views as to whether it is an accurate representation of reality or whether "Huygens' principle actually does give the right answer but for the wrong reasons".

Kirchhoff's diffraction formula provides a rigorous mathematical foundation for diffraction, based on the wave equation. The arbitrary assumptions made by Fresnel to arrive at the Huygens–Fresnel equation emerge automatically from the mathematics in this derivation.[6]

A simple example of the operation of the principle can be seen when two rooms are connected by an open doorway and a sound is produced in a remote corner of one of them. A person in the other room will hear the sound as if it originated at the doorway. As far as the second room is concerned, the vibrating air in the doorway is the source of the sound.

[edit] Mathematical expression of the principle

Geometric arrangement for Fresnel's calculation

Consider the case of a point source located at a point P0, vibrating at a frequency f. The disturbance may be described by a complex variable U0 known as the complex amplitude. It produces a spherical wave with wavelength λ, wavenumber k = 2π/λ. The complex amplitude of the primary wave at the point Q located at a distance r0 from P0 is given by

U(r_0) = \frac {U_0 e^{ikr_0}}{r_0}

since the magnitude decreases in inverse proportion to the distance travelled, and the phase changes as k times the distance travelled.

Using Huygens' theory and the principle of superposition of waves, the complex amplitude at a further point P is found by summing the contributions from each point on the sphere of radius r0. In order to get agreement with experimental results, Fresnel found that the individual contributions from the secondary waves on the sphere had to be multiplied by a constant, i/λ, and by an additional inclination factor, K(χ). The first assumption means that the secondary waves oscillate at a quarter of a cycle out of phase with respect to the primary wave, and that the magnitude of the secondary waves are in a ratio of 1:λ to the primary wave. He also assumed that K(χ) had a maximum value when χ = 0, and was equal to zero when χ = π/2. The complex amplitude at P is then given by:

 U(P) = \frac {iU(r_0)}{\lambda} \int_{S} \frac {e^{iks}}{s} K(\chi)\,dS

where S describes the surface of the sphere, and s is the distance between Q and P.

Fresnel used a zone construction method to find approximate values of K for the different zones,[4] which enabled him to make predictions which were in agreement with experimental results.

The various assumptions made by Fresnel emerge automatically in Kirchhoff's diffraction formula,[4] to which the Huygens–Fresnel principle can be considered to be an approximation. Kirchoff gave the following expression for K(χ):

~K(\chi )= - \frac{i}{2 \lambda}(1+\cos \chi)

This incorporates the quarter cycle phase shift and the reduced magnitude; K has a maximum value at χ = 0 as in the Huygens–Fresnel principle; however, K is not equal to zero at χ = π/2.

[edit] Huygens' principle and quantum electrodynamics

Huygens' principle can be seen as a consequence of the isotropy of space - all directions in space are equal. Any disturbance created in a sufficiently small region of isotropic space (or in an isotropic medium) propagates from that region in all radial directions. The waves created by this disturbance, in turn, create disturbances in other regions, and so on. The superposition of all the waves results in the observed pattern of wave propagation.

Isotropy of space is fundamental to quantum electrodynamics (QED) where the wave function of any object propagates along all available unobstructed paths. When integrated along all possible paths, with a phase factor which is proportional to the path length, the interference of the wave-functions correctly predicts observable phenomena.

[edit] See also

[edit] References

  1. ^ Chr. Huygens, Traitė de la Lumiere (completed in 1678, published in Leyden in 1690)
  2. ^ a b OS Heavens and RW Ditchburn, Insight into Optics, 1987, Wiley & Sons, Chichester ISBN 0 471 92769 4
  3. ^ A. Fresnel, Ann Chim et Phys, (2), 1 (1816), Oeuvres, Vol.1, 89, 129
  4. ^ a b c Max Born and Emil Wolf, Principles of Optics, 1999, Cambridge University Press ISBN 978-0-521-64222-4
  5. ^ Huygens' Principle
  6. ^ MV Klein & TE Furtak, Optics,1986, John Wiley & Sons, New York

'★ 과학 이야기' 카테고리의 다른 글

물리 위키피디아 참고  (0) 2012.06.07
양자 관련 자료 2개  (0) 2012.04.22
Probability flux  (0) 2012.03.16
Angular momentum operators (l=1)  (0) 2012.02.16
Blackbody Radiation 수식정리  (0) 2011.03.18
Posted by White Joker
★ 과학 이야기2012. 3. 16. 20:20

 양자역학(quantum mechanics)을 공부하다 보면 파동함수(wave function)를 확률진폭(probability amplitude)로 주로 해석한다. 여기서 파동함수의 제곱, psi^*psi = |psi|^2 을 확률밀도함수(probability density function)로써 해석한다.

 만약 이 밀도함수가 time dependent라면? 당연히 시간에 대한 편미분을 생각해 볼 수 있고, 밀도의 시간미분은 연속방정식(continuity equation)을 떠올리게 한다.

 여기서 나오는 flux를 probability flux(or probability current)라고 한다.


 관련 자료:
http://en.wikipedia.org/wiki/Probability_flux
http://quantummechanics.ucsd.edu/ph130a/130_notes/node122.html
http://www.phys.ufl.edu/~rfield/PHY4604/images/Chapter1_13.pdf
http://quantummechanics.ucsd.edu/ph130a/130_notes/node159.html

'★ 과학 이야기' 카테고리의 다른 글

양자 관련 자료 2개  (0) 2012.04.22
[Wikipedia] Huygens–Fresnel principle  (0) 2012.03.30
Angular momentum operators (l=1)  (0) 2012.02.16
Blackbody Radiation 수식정리  (0) 2011.03.18
Blackbody radiation 총정리  (0) 2011.03.18
Posted by White Joker
★ 과학 이야기2012. 2. 16. 21:10

 간단한 모양이고, eigenvalues가 +-하바, 0으로 뻔하게 예상되니 eigenkets도 뻔하게 보인다.

   Operator Eigenkets 
 z    
 x    
 y    

그냥 눈대중으로 한거라 틀릴 수도 있는데ㅋㅋ 맞겠지 뭐.

물론 각 operator가 Hermitian이고, commutative relation

이 성립함은 당연하다.

 이는 Pauli matrces/2 의 관계와 같으며, SO(3)-SU(2) homomorphism과 관계가 있다.

'★ 과학 이야기' 카테고리의 다른 글

[Wikipedia] Huygens–Fresnel principle  (0) 2012.03.30
Probability flux  (0) 2012.03.16
Blackbody Radiation 수식정리  (0) 2011.03.18
Blackbody radiation 총정리  (0) 2011.03.18
Schottky diode  (0) 2011.03.04
Posted by White Joker
★ 과학 이야기2011. 3. 18. 17:21



이건 핸드폰으로 와서 한번씩 정리할 때 보려고 공개한다.
로그인 하는 시간이 아까워서 ... 공개.
원문은 좀 창피해서ㅋ



일주일 내내 고생했다.

식이 잘 유도가 안되는데, Serway's Modern physics 3/e 에는 설명이 잘 나와있지 않다.
Gasiorowicz's Quantum physics도 중간에 식 증명을 너무 생략한다.

그래서 걍 열심히 인터넷 뒤적뒤적거리면서 했다.

그나마, 어제, 증명하던 것들이 다 풀려서 조금 뿌듯하다.

역사적 흐름을 알면 수식을 이해하고 암기하고 유도하는 과정을 익히는 게 조금 더 쉬워진다.

하지만 쉬워 봤자 흑체복사... 으앙 어려워 ㅜㅜ

'★ 과학 이야기' 카테고리의 다른 글

Probability flux  (0) 2012.03.16
Angular momentum operators (l=1)  (0) 2012.02.16
Blackbody radiation 총정리  (0) 2011.03.18
Schottky diode  (0) 2011.03.04
QFT, RQM.  (0) 2011.02.11
Posted by White Joker
2011. 3. 18. 16:55

보호되어 있는 글입니다.
내용을 보시려면 비밀번호를 입력하세요.

★ 과학 이야기2011. 3. 4. 15:03

 쇼트키 다이오드. 이것은 일반 실리콘 다이오드하고 다르다.


 Diode란 p-n semiconductor로, p(anode)방향에서 n(cathod)방향으로만 전류가 흐를 수 있는 소자다.

Figure 1 Schottky diode[1]

다이오드는 전류를 한 방향으로만 흐르게 해 정류(rectificatiion) 등에 사용한다.

나도 PZT sensor를 이용해 전압을 얻어봤는데, AC를 DC로 바꾸는 과정에서 4개의 diodes로 bridge를 만들어 정류해 본 적이 있다.

그런데 일반적으로 다이오드는 전압감소가 0.6~1.7V 정도 나는데, germanium diode는 0.3V 정도라서 PZT같은 작은 전압을 다룰 때는 후자가 더 적합했다.


그리고 시간이 좀 흘렀는데, 지금 schottky diode라는 것을 알게 되었다. 이것은 전압 감소가 0.15~0.45V 정도다. ㅋㅋ.
정류회로 만들 때 저마늄 다이오드 썼는뎅ㅜ

어쨌든 다음엔 쇼트키 다이오드도 한 번 써봐야 겠다. 이놈 훌륭하네ㅋ

게다가 reverse recovery time(conduction하고 non-conducting state하고 스위칭 할 때 걸리는 시간)이 매우 짧다고 한다.
(i.e, 높은 주파수도 잘 정류할 수 있다.)

대신에 germanium diode처럼 reverse leakage current가 silicon diode보다 크다는 단점이 있다.



Reference
[1] Wikipedia, http://en.wikipedia.org/wiki/Schottky_diode

'★ 과학 이야기' 카테고리의 다른 글

Blackbody Radiation 수식정리  (0) 2011.03.18
Blackbody radiation 총정리  (0) 2011.03.18
QFT, RQM.  (0) 2011.02.11
Compton shift  (0) 2010.12.03
Diffraction concept tree  (0) 2010.11.21
Posted by White Joker
2011. 2. 11. 15:16

보호되어 있는 글입니다.
내용을 보시려면 비밀번호를 입력하세요.